iscc Tutorial

Sven Verdoolaege

INRIA, France and KU Leuven
Sven.Verdoolaege@inria.fr

December 19, 2014
Outline

1. Introduction

2. Basic Concepts and Operations
 - Sets and Statement Instances
 - Maps and AST Generation
 - Access Relations and Polyhedral Model
 - Dataflow Analysis
 - Transitive Closures
 - Basic Counting
 - Computing Bounds
 - Weighted Counting

3. Simple Applications
 - Pointer Conversion
 - Dynamic Memory Requirement Estimation
 - Reuse Distance Computation
Outline

1 Introduction

2 Basic Concepts and Operations
 - Sets and Statement Instances
 - Maps and AST Generation
 - Access Relations and Polyhedral Model
 - Dataflow Analysis
 - Transitive Closures
 - Basic Counting
 - Computing Bounds
 - Weighted Counting

3 Simple Applications
 - Pointer Conversion
 - Dynamic Memory Requirement Estimation
 - Reuse Distance Computation
Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
⇒ inspired by Omega Calculator from the Omega Project

Examples from polyhedral model for program analysis and transformation
Introduction

What is iscc?

⇒ interactive interface to the barvinok counting library
⇒ also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
⇒ inspired by Omega Calculator from the Omega Project

Where to get iscc?

⇒ currently distributed as part of barvinok package
⇒ available from http://barvinok.gforge.inria.fr/
Introduction

- What is iscc?
 - interactive interface to the barvinok counting library
 - also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
 - inspired by Omega Calculator from the Omega Project

- Where to get iscc?
 - currently distributed as part of barvinok package
 - available from http://barvinok.gforge.inria.fr/

- How to run iscc?
 - compile and install barvinok following the instructions in README
 - run iscc
 Note: iscc currently does not use readline, so you may want to use a readline front-end: rlwrap iscc
Introduction

- What is iscc?
 - interactive interface to the barvinok counting library
 - also provides interface to the pet polyhedral model extractor and to some operations from the isl integer set library, including AST generation
 - inspired by Omega Calculator from the Omega Project

- Where to get iscc?
 - currently distributed as part of barvinok package
 - available from http://barvinok.gforge.inria.fr/

- How to run iscc?
 - compile and install barvinok following the instructions in README
 - run iscc
 Note: iscc currently does not use readline, so you may want to use a readline front-end: rlwrap iscc

Examples from polyhedral model for program analysis and transformation
Interaction with Libraries and Tools

isl: manipulates parametric affine sets and relations
barvinok: counts elements in parametric affine sets and relations
pet: extracts polyhedral model from clang AST
PPCG: Polyhedral Parallel Code Generator
iscc: interactive calculator
isa: prototype tool set including derivation of process networks and equivalence checker
Overview of isl

isl is a thread-safe C library for manipulating integer sets and relations

- bounded by affine constraints
- involving symbolic constants and
- existentially quantified variables

and quasi-affine and quasi-polynomial functions on such domains

Supported operations by core library include

- intersection
- union
- set difference
- integer projection
- coalescing
- closed convex hull
- sampling, scanning
- integer affine hull
- lexicographic optimization
- transitive closure (approx.)
- parametric vertex enumeration
- bounds on quasipolynomials

Polyhedral compilation library

- schedule trees
- dataflow analysis
- scheduling
- AST generation
Outline

1. Introduction

2. Basic Concepts and Operations
 - Sets and Statement Instances
 - Maps and AST Generation
 - Access Relations and Polyhedral Model
 - Dataflow Analysis
 - Transitive Closures
 - Basic Counting
 - Computing Bounds
 - Weighted Counting

3. Simple Applications
 - Pointer Conversion
 - Dynamic Memory Requirement Estimation
 - Reuse Distance Computation
Statement Instance Set

```c
for (i = 1; i <= 5; ++i)
    for (j = 1; j <= i; ++j)
        /* S */
```
Statement Instance Set

```plaintext
for (i = 1; i <= 5; ++i)
  for (j = 1; j <= i; ++j)
    /* S */
```

Diagram showing the range of `i` and `j` values.
Statement Instance Set

\[
\begin{align*}
\text{for } (i &= 1; i \leq 5; ++i) \\
\text{for } (j &= 1; j \leq i; ++j) \\
/* S */ \\
\end{align*}
\]

\[
\{ \, S[i,j] \mid 1 \leq i \leq 5 \text{ and } 1 \leq j \leq i \, \}
\]
Statement Instance Set

\[
\text{for} \ (i = 1; i <= 5; ++i) \\
\quad \text{for} \ (j = 1; j <= i; ++j) \\
\quad \quad /* S */ \\
\]

(optional) name of space

\[
\{ \mathbf{S}[i,j] : 1 <= i <= 5 \text{ and } 1 <= j <= i \}
\]
Statement Instance Set

```
for (i = 1; i <= 5; ++i)
    for (j = 1; j <= i; ++j)
        /* S */
```

(optional) name of space

\{ S[i,j] : 1 <= i <= 5 and 1 <= j <= i \}
Statement Instance Set

```
for (i = 1; i <= 5; ++i)
   for (j = 1; j <= i; ++j)
      /* S */
```

(optional) name of space

\{ S[i,j] : 1 <= i <= 5 and 1 <= j <= i \}

set variables

Presburger formula
Statement Instance Set

\[
\text{for } (i = 1; i \leq n; ++i) \\
\text{for } (j = 1; j \leq i; ++j) \\
/* S */
\]

(optional) name of space

\[
[n] \rightarrow \{ S[i,j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq i \}
\]
Statement Instance Set

```
for (i = 1; i <= n; ++i)
  for (j = 1; j <= i; ++j)
    /* S */
```

(optional) name of space

\[[n] \rightarrow \{ S[i,j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq i \} \]
Set Variables and Symbolic Constants

- set variables
 - local to set
 - identified by position

- symbolic constants
 - global
 - identified by name
Set Variables and Symbolic Constants

- set variables
 - local to set
 - identified by position

- symbolic constants
 - global
 - identified by name

\[[n] \rightarrow \{ [i,j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq i \} \]

is equal to

\[[n] \rightarrow \{ [a,b] : 1 \leq a \leq n \text{ and } 1 \leq b \leq a \} \]

but not equal to

\[[n] \rightarrow \{ [j,i] : 1 \leq i \leq n \text{ and } 1 \leq j \leq i \} \]

or

\[[m] \rightarrow \{ [i,j] : 1 \leq i \leq m \text{ and } 1 \leq j \leq i \} \]
AST Generation, Schedules and Maps

```plaintext
def (i = 1; i <= n; ++i)
  for (j = 1; j <= i; ++j)
    /* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };
⇒ generate AST that visits elements in lexicographic order
```
AST Generation, Schedules and Maps

```c
for (i = 1; i <= n; ++i)
  for (j = 1; j <= i; ++j)
    /* S */
```

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };
⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a **schedule**: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange \(i \) and \(j \)
\{S[i,j] -> \([t1,t2]\) : t1 = j and t2 = i\}

{S[i,j] -> \([j,i]\)}
AST Generation, Schedules and Maps

```c
for (i = 1; i <= n; ++i)
    for (j = 1; j <= i; ++j)
        /* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };
⇒ generate AST that visits elements in lexicographic order
```

What if a different order is needed?
⇒ apply a **schedule**: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j

```
{S[i,j] -> [t1,t2] : t1 = j and t2 = i} or {S[i,j] -> [j,i]}
```

AST Generation, Schedules and Maps

\[
\text{for } (i = 1; i \leq n; ++i)
\]
\[
\text{for } (j = 1; j \leq i; ++j)
\]
\[
/* S */
\]

codegen \([n] \rightarrow \{ S[i,j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq i \} \);
⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange \(i\) and \(j\)
\[
\{ S[i,j] \rightarrow [t1,t2] : t1 = j \text{ and } t2 = i \} \text{ or } \{ S[i,j] \rightarrow [j,i] \}
\]
\[S := [n] \rightarrow \{ S[i,j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq i \} ;
\]
codegen (\{S[i,j] \rightarrow [j,i]\} * S);
AST Generation, Schedules and Maps

```c
for (i = 1; i <= n; ++i)
    for (j = 1; j <= i; ++j)
        /* S */

codegen [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };
⇒ generate AST that visits elements in lexicographic order

What if a different order is needed?
⇒ apply a schedule: maps instance set to multi-dimensional time
⇒ multi-dimensional time is ordered lexicographically

Example: interchange i and j
{S[i,j] -> [t1,t2] : t1 = j and t2 = i} or {S[i,j] -> [j,i]}
S := [n] -> { S[i,j] : 1 <= i <= n and 1 <= j <= i };
codegen ({S[i,j] -> [j,i]} * S);
```

intersect domain of map on the left with set on the right
AST Generation, Schedules and Maps

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other
⇒ schedule is required because no ordering defined over spaces with different names
AST Generation, Schedules and Maps

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other
⇒ schedule is required because no ordering defined over spaces with different names

Examples:

\[S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \]
\[M := \{ A[i] \rightarrow [0,i]; B[i] \rightarrow [1,i] \}; \]
\[\text{codegen (M * S)}; \]
AST Generation, Schedules and Maps

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other
⇒ schedule is required because no ordering defined over spaces with different names

Examples:

\[S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \]
\[M := \{ A[i] \rightarrow [0,i]; B[i] \rightarrow [1,i] \}; \]
\[\text{codegen} (M \ast S); \]
AST Generation, Schedules and Maps

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other
⇒ schedule is required because no ordering defined over spaces with different names

Examples:

\[S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \]

\[M := \{ A[i] \rightarrow [0,i]; B[i] \rightarrow [1,i] \}; \]

codegen (M * S);

declaration

all elements of A before any element of B
AST Generation, Schedules and Maps

Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other
⇒ schedule is required because no ordering defined over spaces with different names

Examples:

\[S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \]

\[M := \{ A[i] \rightarrow [0,i]; B[i] \rightarrow [1,i] \}; \]

codegen (M * S);

disjunction

all elements of A before any element of B

\[S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \]

\[M := \{ A[i] \rightarrow [i,1]; B[i] \rightarrow [i,0] \}; \]

codegen (M * S);
Generating AST for more than one space/statement

⇒ spaces should be named to distinguish them from each other
⇒ schedule is required because no ordering defined over spaces with different names

Examples:

\[
S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \\
M := \{ A[i] \rightarrow [0,i]; B[i] \rightarrow [1,i] \}; \\
\text{codegen} (M \ast S); \\
\]

all elements of A before any element of B

\[
S := [n] \rightarrow \{ A[i] : 0 \leq i \leq n; B[i] : 0 \leq i \leq n \}; \\
M := \{ A[i] \rightarrow [i,1]; B[i] \rightarrow [i,0] \}; \\
\text{codegen} (M \ast S); \\
\]

each element of A after corresponding element of B
Access Relations and Polyhedral Model

Simple program with temporary array t:

```c
for (i = 0; i < N; ++i)
S1: t[i] = f(a[i]);
for (i = 0; i < N; ++i)
S2: b[i] = g(t[N-i-1]);
```

An access relation maps a statement instance to an array index
For example, the access relation for the read in $S2$:

$$[N] \rightarrow \{ S2[i] \rightarrow t[N-i-1] \}$$
Access Relations and Polyhedral Model

Simple program with temporary array \(t \):

```c
for (i = 0; i < N; ++i)
S1: \( t[i] = f(a[i]); \)
for (i = 0; i < N; ++i)
S2: \( b[i] = g(t[N-i-1]); \)
```

An access relation maps a statement instance to an array index. For example, the access relation for the read in \(S2 \):

\([N] \rightarrow \{ S2[i] \rightarrow t[N-i-1] \}\)

Polyhedral model of a program consists of:

- statement instance set
- access relations (must writes, may writes, reads)
- initial schedule

```c
M := parse_file("simple.c");
D := M[0]; W := M[1]; R := M[3]; S := M[4];
```
Lexicographic Optimization

for (i = 0; i < N; ++i)
 for (j = 0; j < N - i; ++j)
 a[i+j] = f(a[i+j]);

What is the last iteration of the loop?

S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };
lexmax S;
Lexicographic Optimization

\[\text{for } (i = 0; i < N; ++i) \]
\[\hspace{1cm} \text{for } (j = 0; j < N - i; ++j) \]
\[a[i+j] = f(a[i+j]); \]

What is the last iteration of the loop?

\[S := [N] \rightarrow \{ [i,j] : 0\leq i<N \text{ and } 0\leq j<N-i \}; \]
\[\text{lexmax } S; \text{ lexicographically last element of set} \]
Lexicographic Optimization

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

- What is the last iteration of the loop?

\[S := \{ i, j \} : 0 \leq i < N \text{ and } 0 \leq j < N - i \}; \]
\[\text{lexmax } S; \quad \text{lexicographically last element of set} \]

- When is a given array element accessed last?

\[A := \{ i, j \} : 0 \leq i < N \text{ and } 0 \leq j < N - i \}; \]
\[\text{lexmax } (A^{-1}) \]
Lexicographic Optimization

for (i = 0; i < N; ++i)
 for (j = 0; j < N - i; ++j)
 a[i+j] = f(a[i+j]);

- What is the last iteration of the loop?

 S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };
 lexmax S; lexicographically last element of set

- When is a given array element accessed last?

 A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};
 lexmax (A^-1); inverse map
Lexicographic Optimization

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

- What is the last iteration of the loop?

 \[S := [N] \rightarrow \{ [i,j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \}; \]

 \[\text{lexmax} S; \quad \text{lexicographically last element of set} \]

- When is a given array element accessed last?

 \[A := [N] \rightarrow \{ [i,j] \rightarrow a[i+j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \}; \]

 \[\text{lexmax } (A^{-1}); \quad \text{inverse map} \]

 \[\text{lexicographically last image element} \]
Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
W: Write(a[i]);
```

Access relations:

```plaintext
A1:=\mathbb{N}\rightarrow\{F[i,j]\rightarrow a[i+j] : 0\leq i < N \text{ and } 0\leq j < N - i\};
A2:=\mathbb{N}\rightarrow\{W[i] \rightarrow a[i] : 0 \leq i < N\};
```

Map to all writes:

\[R := A2 \cdot (A1^{-1}) \]

Last write:

\[\text{lexmax } R \]

In general: impose lexicographical order on shared iterators
Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    W: Write(a[i]);
```

Access relations:

<table>
<thead>
<tr>
<th>Relation</th>
<th>Domain</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 := N -> {F[i,j] -> a[i+j]: 0 <= i < N and 0 <= j < N}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2 := N -> {W[i] -> a[i]: 0 <= i < N}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Map to all writes:

```
R := A2 . (A1^(-1));
```

Last write:

```
lexmax R;
```

In general: impose lexicographical order on shared iterators
Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    W: Write(a[i]);
```

Access relations:

- \(A1 : [N] \rightarrow \{ F[i,j] \rightarrow a[i+j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \} \);
- \(A2 : [N] \rightarrow \{ W[i] \rightarrow a[i] : 0 \leq i < N \} \);
Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

```plaintext
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        F: a[i+j] = f(a[i+j]);
for (i = 0; i < N; ++i)
    W: Write(a[i]);
```

Access relations:

```
A1:=[N]->{F[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};
A2:=[N]->{W[i] -> a[i] : 0 <= i < N };
```

Map to all writes: R := A2 . (A1^−1);

- `F` represents the forward access relation
- `W` represents the write access relation
- `R` represents the result of mapping all writes to the array elements
Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

\[
\begin{align*}
\text{for} & \quad (i = 0; i < N; ++i) \\
& \quad \text{for} \quad (j = 0; j < N - i; ++j) \\
F: & \quad a[i+j] = f(a[i+j]); \\
W: & \quad \text{Write}(a[i]);
\end{align*}
\]

Access relations:
\[
A1 := [N] \rightarrow \{ F[i,j] \rightarrow a[i+j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \};
A2 := [N] \rightarrow \{ W[i] \rightarrow a[i] : 0 \leq i < N \};
\]

Map to all writes:
\[
R := A2 \cdot (A1^{-1});
\]

Last write: \(\text{lexmax} \ R; \)
Dataflow Analysis

Given a read from an array element, what was the last write to the same array element before the read?

Simple case: array written through a single access

\[
\text{for (i = 0; i < N; ++i)} \\
\text{\hspace{1em} for (j = 0; j < N - i; ++j)} \\
\text{F: a[i+j] = f(a[i+j])}; \\
\text{W: Write(a[i])};
\]

Access relations:

\[
A1 := [N] -> \{F[i,j] -> a[i+j] : 0 <= i < N \text{ and } 0 <= j < N - i}\}; \\
A2 := [N] -> \{W[i] -> a[i] : 0 <= i < N \};
\]

Map to all writes: \(R := A2 \cdot (A1^{-1}) \);

Last write: \(\text{lexmax R} \);

In general: impose lexicographical order on shared iterators
Dataflow Analysis

In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write
In general:

last Write before Read under Schedule

Result: last write + set of reads without corresponding write

```
for (i = 0; i < n; ++i)
T:  t[i] = a[i];
for (i = 0; i < n; ++i)
    for (j = 0; j < n - i; ++j)
F:    t[j] = f(t[j], t[j+1]);
for (i = 0; i < n; ++i)
B:  b[i] = t[i];
```

```
M := parse_file("dep.c");
Write := M[1]; Read := M[2]; Sched := M[3];
last Write before Read under Sched;
```
Transitive Closures

Given a graph (represented as an affine map)

\[M := \{ A[i] \rightarrow A[i+1] : 0 \leq i \leq 3; B[] \rightarrow A[2] \}; \]

What is the transitive closure?

\[M^+; \]

Result:

\[\{ B[] \rightarrow A[o_0] : o_0 \leq 4 \text{ and } o_0 \geq 3; B[] \rightarrow A[2]; A[i] \rightarrow A[o_0] : i \geq 0 \text{ and } i \leq 3 \text{ and } o_0 \geq 1 \text{ and } o_0 \leq 4 \text{ and } o_0 \geq 1 + i \}, \]

True
Transitive Closures

Given a graph (represented as an affine map)

\[M := \{ A[i] \rightarrow A[i+1] : 0 \leq i \leq 3; B[] \rightarrow A[2] \}; \]

What is the transitive closure? \(\Rightarrow M^+; \)
Transitive Closures

Given a graph (represented as an affine map)

\[M := \{ A[i] \rightarrow A[i+1] : 0 \leq i \leq 3; B[] \rightarrow A[2] \}; \]

What is the transitive closure? \[\Rightarrow M^+; \]

Result:

\[
\{ B[] \rightarrow A[o0] : o0 \leq 4 \text{ and } o0 \geq 3; B[] \rightarrow A[2]; A[i] \rightarrow A[o0] : i \geq 0 \text{ and } i \leq 3 \text{ and } o0 \geq 1 \text{ and } o0 \leq 4 \text{ and } o0 \geq 1 + i \}, \text{ True} \]
Transitive Closures

Given a graph (represented as an affine map)

\[M := \{ A[i] \rightarrow A[i+1] : 0 \leq i \leq 3; B[] \rightarrow A[2] \}; \]

What is the transitive closure? \[\Rightarrow M^+; \]

Result:

\[\{ B[] \rightarrow A[o\theta] : o\theta \leq 4 \text{ and } o\theta \geq 3; B[] \rightarrow A[2]; A[i] \rightarrow A[o\theta] : i \geq 0 \text{ and } i \leq 3 \text{ and } o\theta \geq 1 \text{ and } o\theta \leq 4 \text{ and } o\theta \geq 1 + i \}, \text{True} \]
Reachability Analysis

```plaintext
double x[2][10];
int old = 0, new = 1, i, t;
for (t = 0; t<1000; t++) {
    for (i = 0; i<10;i++)
        x[new][i] = g(x[old][i]);
    new = (new+1) %2; old = (old+1) %2;
}

Invariant between new and old?
```
Reachability Analysis

double x[2][10];
int old = 0, new = 1, i, t;
for (t = 0; t<1000; t++) {
 for (i = 0; i<10;i++)
 x[new][i] = g(x[old][i]);
 new = (new+1) %2; old = (old+1) %2;
}

Invariant between new and old?

T := {[new,old] -> [(new+1)%2,(old+1)%2]};
S0 := {[0,1]};
(T^+)(S0);
Cardinality

```plaintext
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

- How many times is the statement executed?

```plaintext
S := \{ [i,j] : 0<=i<N and 0<=j<N-i \};
card S;
```
Cardinality

\[
\begin{align*}
\text{for} & \ (i = 0; \ i < N; \ ++i) \\
& \ \text{for} \ (j = 0; \ j < N - i; \ ++j) \\
& \quad a[i+j] = f(a[i+j]);
\end{align*}
\]

- How many times is the statement executed?

\[
S := [N] \rightarrow \{ [i,j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \};
\]

\text{card} \ S; \quad \text{number of elements in the set}
Cardinality

\[
\text{for } (i = 0; i < N; ++i) \\
\quad \text{for } (j = 0; j < N - i; ++j) \\
\quad \quad a[i+j] = f(a[i+j]);
\]

- How many times is the statement executed?

\[
S := \{ [i,j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \}; \\
\text{card } S; \quad \text{number of elements in the set}
\]

- How many times is a given array element written?

\[
A := \{ [i,j] \rightarrow a[i+j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \}; \\
\text{card } (A^{-1});
\]
Cardinality

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

- How many times is the statement executed?

```
S := [N] -> { [i,j] : 0<=i<N and 0<=j<N-i };
\text{card } S; \quad \text{number of elements in the set}
```

- How many times is a given array element written?

```
A:=[N]->{[i,j]->a[i+j]:0<=i<N and 0<=j<N-i};
\text{card } (A^{-1}); \quad \text{number of image elements}
```
Cardinality

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

- How many times is the statement executed?

```latex
S := [N] -> \{ [i,j] : 0<=i<N and 0<=j<N-i \};
\text{card } S; \quad \text{number of elements in the set}
```

- How many times is a given array element written?

```latex
A := [N] -> \{[i,j] -> a[i+j]: 0<=i<N and 0<=j<N-i\};
\text{card } (A^\sim - 1); \quad \text{number of image elements}
```

- How many array elements are written?

```latex
A := [N] -> \{[i,j] -> a[i+j]: 0<=i<N and 0<=j<N-i\};
\text{card (ran A)};
```
Quasipolynomials

```c
for (i = 1; i <= n; ++i)
    for (j = 1; j <= n - 2 * i; ++j)
        /* S */
```

How many times is S executed?

```
card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };
```
Quasipolynomials

```c
for (i = 1; i <= n; ++i)
    for (j = 1; j <= n - 2 * i; ++j)
        /* S */
```

How many times is S executed?

```c
card [n] -> { [i,j] : 1 <= i <= n and 1 <= j <= n - 2i };
```

Result:

```c
[n] -> { ((-1/4 * n + 1/4 * n^2) - 1/2 * floor((n)/2)) : n >= 3 }
```

That is,

$$-\frac{n}{4} + \frac{n^2}{4} - \frac{1}{2}\left\lfloor \frac{n}{2} \right\rfloor \quad \text{if } n \geq 3.$$
Quasipolynomials

```c
for (i = 1; i <= n; ++i)
    for (j = 1; j <= n - 2 * i; ++j)
/* S */
```

How many times is S executed?

card \([n]\) \rightarrow \{ [i,j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq n - 2i \};

Result:

\([n] \rightarrow \{ (-1/4 * n + 1/4 * n^2) - 1/2 * \lfloor (n)/2 \rfloor : n \geq 3 \}\}

That is,

\[-\frac{n}{4} + \frac{n^2}{4} - \frac{1}{2} \left\lfloor \frac{n}{2} \right\rfloor \text{ if } n \geq 3.\]

Polynomial approximations

⇒ run iscc --polynomial-approximation
Memory Requirements

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j) {
        p = malloc(i * j + i - N + 1);
        /* ... */
        free(p);
    }
```

How much memory is needed?
Memory Requirements

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j) {
        p = malloc(i * j + i - N + 1);
        /* ... */
        free(p);
    }
```

How much memory is needed?

\[
\text{ub } [N] \rightarrow \{[i,j] \rightarrow i\times j + i - N + 1: 0 \leq i < N \text{ and } i \leq j < N\};
\]
Memory Requirements

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j) {
        p = malloc(i * j + i - N + 1);
        /* ... */
        free(p);
    }
```

How much memory is needed?

\[\text{ub } [N] \rightarrow \{[i,j] \rightarrow i\cdot j + i - N + 1: 0 \leq i < N \text{ and } i \leq j < N\}; \]

Result:

\[([N] \rightarrow \{ \max((1 - 2 \cdot N + N^2)) : N \geq 1 \}, \text{True}) \]
Memory Requirements

```c
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j) {
        p = malloc(i * j + i - N + 1);
        /* ... */
        free(p);
    }
```

How much memory is needed?

$$ub \ [N] \rightarrow \{(i,j) \rightarrow i \times j + i - N + 1: 0 \leq i < N \text{ and } i \leq j < N\};$$

Result:

$$([N] \rightarrow \{ \max((1 - 2 \times N + N^2)) : N \geq 1 \}, \text{True})$$

bound is tight
Incremental Counting

```c
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

How many times is the statement executed?

- direct computation

 \[
 \text{card } [N] \rightarrow \{ [i,j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \};
 \]
Incremental Counting

\[
\text{for } (i = 0; i < N; ++i) \\
\quad \text{for } (j = 0; j < N - i; ++j) \\
\quad \ a[i+j] = f(a[i+j]);
\]

How many times is the statement executed?

- **direct computation**

 \[
 \text{card } [N] \rightarrow \{ [i,j]: 0 \leq i < N \text{ and } 0 \leq j < N - i \};
 \]

- **incremental computation**

 \[
 \text{card } [N] \rightarrow \{ [i] \rightarrow [j]: 0 \leq i < N \text{ and } 0 \leq j < N - i \};
 \]
Incremental Counting

```
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

How many times is the statement executed?

- **direct computation**

 \[\text{card} \ [N] \rightarrow \{ [i,j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \} ; \]

- **incremental computation**

 \[\text{card} \ [N] \rightarrow \{ [i] \rightarrow [j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \} ; \]

 Result:
 \[[N] \rightarrow \{ [i] \rightarrow (N - i) : i \leq -1 + N \text{ and } i \geq 0 \} \]
 \[\text{sum} \ [N] \rightarrow \{ [i] \rightarrow (N - i) : i \leq -1 + N \text{ and } i \geq 0 \} ; \]
Incremental Counting

```markdown
for (i = 0; i < N; ++i)
    for (j = 0; j < N - i; ++j)
        a[i+j] = f(a[i+j]);
```

How many times is the statement executed?

- **direct computation**

 \[\text{card } [N] \rightarrow \{ [i,j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \} ; \]

- **incremental computation**

 \[\text{card } [N] \rightarrow \{ [i] \rightarrow [j] : 0 \leq i < N \text{ and } 0 \leq j < N - i \} ; \]

Result:

\[[N] \rightarrow \{ [i] \rightarrow (N - i) : i \leq -1 + N \text{ and } i \geq 0 \} ; \]

\[\text{sum } [N] \rightarrow \{ [i] \rightarrow (N - i) : i \leq -1 + N \text{ and } i \geq 0 \} ; \]

\text{sum over all elements in domain}
Total Memory Allocation

```
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        p[i][j] = malloc(i * j + i - N + 1);
/* ... */
for (i = 0; i < N; ++i)
    for (j = i; j < N; ++j)
        free(p[i][j]);
```

How much memory allocated in total?
Total Memory Allocation

\[
\text{for } (i = 0; i < N; ++i) \\
\quad \text{for } (j = i; j < N; ++j) \\
\quad \quad p[i][j] = \text{malloc}(i * j + i - N + 1); \\
\quad /* ... */ \\
\text{for } (i = 0; i < N; ++i) \\
\quad \text{for } (j = i; j < N; ++j) \\
\quad \quad \text{free}(p[i][j]); \\
\]

How much memory allocated in total?

\[
\text{sum } [N] \rightarrow \{[i,j] \rightarrow i* j + i - N + 1: 0 \leq i < N \text{ and } i \leq j < N\};
\]
Weighted Counting

$F := \{ [x,y] \rightarrow \frac{1}{4}x^2 + \frac{1}{4}y^2 : 1 \leq x, y \leq 2 \}$;
Weighted Counting

\[F := \{ [x,y] \rightarrow \frac{1}{4}x^2 + \frac{1}{4}y^2 : 1 \leq x, y \leq 2 \}; \]
\[D := \text{dom } F; \]
Weighted Counting

\[F := \{ [x,y] \rightarrow \frac{1}{4}x^2 + \frac{1}{4}y^2 : 1 \leq x,y \leq 2 \}; \]

\[D := \text{dom } F; \]

\[F(D); \]

\[\Rightarrow \text{sum of } F \text{ over points in } D \]
Weighted Counting

\[M : x \to (x, y) \]

\[
F := \{ [x, y] \to \frac{1}{4}x^2 + \frac{1}{4}y^2 : 1 \leq x, y \leq 2 \};
\]

\[D := \text{dom } F; \]

\[F(D); \]

\[\Rightarrow \text{sum of } F \text{ over points in } D \]

\[
M := \{ [x] \to [x, y] \};
\]
Weighted Counting

\[M : x \rightarrow (x, y) \]

\[F := \{ [x,y] \rightarrow \frac{1}{4}x^2+\frac{1}{4}y^2 : 1 \leq x,y \leq 2 \}; \]

\[D := \text{dom } F; \]

\[F(D); \]

\[\Rightarrow \text{sum of } F \text{ over points in } D \]

\[M := \{ [x] \rightarrow [x,y] \}; \]

\[F(M); \]

\[\Rightarrow \text{sum of } F \text{ over image of } M \quad (\text{alternative notation: } M \cdot F) \]
Compositions with Piecewise (Folds of) Quasipolynomials

\(f \cdot g; \)

- \(f: D_1 \rightarrow D_2 \) is a map
- \(g: D_2 \rightarrow \mathbb{Q} \) may be
 - piecewise quasipolynomial (result of counting problems)
 \(\Rightarrow \) take sum over intersection of \(\text{ran } f \) and \(\text{dom } g \)
 - piecewise fold of quasipolynomials (result of upper bound computation)
 \(\Rightarrow \) compute bound over intersection of \(\text{ran } f \) and \(\text{dom } g \)
- \((f \cdot g): D_1 \rightarrow \mathbb{Q} \) of same type as \(g \)

Note: if \(f \) is single-valued, then sum/bound is computed over a single point
Outline

1. Introduction

2. Basic Concepts and Operations
 - Sets and Statement Instances
 - Maps and AST Generation
 - Access Relations and Polyhedral Model
 - Dataflow Analysis
 - Transitive Closures
 - Basic Counting
 - Computing Bounds
 - Weighted Counting

3. Simple Applications
 - Pointer Conversion
 - Dynamic Memory Requirement Estimation
 - Reuse Distance Computation
Pointer Conversion

\[p = a; \]
\[
\textbf{for} \; (i = 0; \; i < N; \; ++i) \\
\quad \textbf{for} \; (j = i; \; j < N; \; ++j) \{ \\
\quad\quad p += 1 + j * ((j-i)/4); \\
\quad\quad *p = \text{hard_work}(i,j); \\
\quad \}
\]

Can we parallelize this code?
Pointer Conversion

p = a;
for (i = 0; i < N; ++i)
 for (j = i; j < N; ++j) {
 p += 1 + j * ((j-i)/4);
 *p = hard_work(i,j);
 }

Can we parallelize this code?
⇒ No, (false) dependency through p
⇒ Compute closed formula for p

\[p = a + \sum_{(i',j') \in S} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor \]

with \(S = \{ (i', j') \in \mathbb{Z}^2 \mid 0 \leq i' < N \land i' \leq j' < N \} \)
Pointer Conversion

\[p = a; \]
\[\text{for } (i = 0; i < N; ++i) \]
\[\quad \text{for } (j = i; j < N; ++j) \{ \]
\[\quad \quad p += 1 + j * ((j-i)/4); \]
\[\quad \quad *p = \text{hard_work}(i,j); \]
\[\} \]

Can we parallelize this code?

⇒ No, (false) dependency through \(p \)
⇒ Compute closed formula for \(p \)

\[
p = a + \sum_{(i', j') \in S} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor
\]

with \(S = \{ (i', j') \in \mathbb{Z}^2 \mid 0 \leq i' < N \land i' \leq j' < N \} \)

lexicographically less than
Pointer Conversion

\[p = a + \sum_{(i', j') \in S} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor \]

with \(S = \{ (i', j') \in \mathbb{Z}^2 \mid 0 \leq i' < N \land i' \leq j' < N \} \)
Pointer Conversion

$$p = a + \sum_{(i',j') \in S} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor$$

with $S = \{(i',j') \in \mathbb{Z}^2 | 0 \leq i' < N \land i' \leq j' < N\}$

S := \([N] \rightarrow \{(i,j) : 0 \leq i < N \land i \leq j < N\}\);
L := S <<= S;
INC := \{ [[i,j] \rightarrow [i',j']] \rightarrow 1 + j' * \left\lfloor (j' - i')/4 \right\rfloor \};
INC := INC * (wrap (L\(^{-1}\)));
sum INC;
Pointer Conversion

\[p = a + \sum_{(i', j') \in S \atop (i', j') \preceq (i, j)} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor \]

with \(S = \{(i', j') \in \mathbb{Z}^2 \mid 0 \leq i' < N \land i' \leq j' < N\} \)

map: (elements of) left set lexicographically smaller than right set

\[
S := [N] -> \{ [i, j] : 0 \leq i < N \land i \leq j < N \};
\]

\[
L := S \ll S;
\]

\[
INC := \{ [[i, j] -> [i', j']] \rightarrow 1 + j' * \left\lfloor (j'-i')/4 \right\rfloor \};
\]

\[
INC := INC * (\text{wrap} (L^{-1}));
\]

sum INC;
Pointer Conversion

$$p = a + \sum_{(i',j') \in S} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor$$

with $S = \{ (i',j') \in \mathbb{Z}^2 \mid 0 \leq i' < N \land i' \leq j' < N \}$

map: (elements of) left set lexicographically smaller than right set

$$S := \{ [i,j] : 0 \leq i < N \land i \leq j < N \};$$

$$L := S \ll S;$$

$$INC := \{ [[i,j] \rightarrow [i',j']] \rightarrow 1 + j' \ast \left\lfloor \frac{j' - i'}{4} \right\rfloor \};$$

$$INC := INC \ast (\text{wrap} (L \wedge -1));$$

$$\text{sum} \ INC;$$

embed map in a set
Pointer Conversion

\[p = a + \sum_{(i',j') \in S, (i',j') \preceq (i,j)} j' \left\lfloor \frac{j' - i'}{4} \right\rfloor \]

with \(S = \{(i', j') \in \mathbb{Z}^2 \mid 0 \leq i' < N \land i' \leq j' < N\} \)

map: (elements of) left set lexicographically smaller than right set

\[
S := [N] -> \{ [i,j] : 0 \leq i < N \land i \leq j < N \}; \\
L := S \ll= S; \\
INC := \{ [[i,j] -> [i',j']] \rightarrow 1 + j' * \left\lfloor (j'-i')/4 \right\rfloor \}; \\
INC := INC * (wrap (L^-1)); \\
sum INC; \\
\]

Note: if domain of argument to \(\text{sum [ub]} \) is an embedded map, then \(\text{sum [bound]} \) is computed over range of embedded map
Dynamic Memory Requirement Estimation [CFGV2006]

How much memory is needed to execute the following program?

```c
void m0(int m) {
    for (c = 0; c < m; c++) {
        m1(c);           /*S1*/
        B[] m2Arr = m2(2*m-c); /*S2*/
    }
}

void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A();        /*S3*/
        B[] dummyArr = m2(i);  /*S4*/
    }
}

B[] m2(int n) {
    B[] arrB = new B[n];    /*S5*/
    for (j = 1; j <= n; j++)
        B b = new B();        /*S6*/
    return arrB;
}
```
Dynamic Memory Requirement Estimation [CFGV2006]

How much memory is needed to execute the following program?

```java
void m0(int m) {
    for (c = 0; c < m; c++) {
        m1(c);          /*S1*/
        B[] m2Arr = m2(2*m-c); /*S2*/
    }
}

void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A();    /*S3*/
        B[] dummyArr = m2(i); /*S4*/
    }
}

B[] m2(int n) {
    B[] arrB = new B[n];    /*S5*/
    for (j = 1; j <= n; j++)
        B b = new B();        /*S6*/
    return arrB;
}
```

D := {
 m0[m]−>S1[c] : 0<=c<m;
 m0[m]−>S2[c] : 0<=c<m;
 m1[k]−>S3[i] : 1<=i<=k;
 m1[k]−>S4[i] : 1<=i<=k;
 m2[n]−>S5[];
 m2[n]−>S6[j] : 1<=j<=n
};
Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?

⇒ compute for each method

\[\text{ret}_m \] size of memory returned by \(m \)

\[\text{cap}_m \] size of memory “captured” (not returned) by \(m \)

\[\text{memRq}_m \] total memory requirements of \(m \)

\[\text{ret}_m + \text{cap}_m = \sum_{\text{p called by } m} \text{ret}_p \]

\[\text{memRq}_m = \text{cap}_m + \max_{\text{p called by } m} \text{memRq}_p \]
Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?

⇒ compute for each method

\[\text{ret}_m \] size of memory returned by \(m \)

\[\text{cap}_m \] size of memory “captured” (not returned) by \(m \)

\[\text{memRq}_m \] total memory requirements of \(m \)

\[
\text{ret}_m + \text{cap}_m = \sum_{p \text{ called by } m} \text{ret}_p
\]

\[
\text{memRq}_m = \text{cap}_m + \max_{p \text{ called by } m} \text{memRq}_p
\]

⇒ summarize over statement instances, i.e., compose with

\[M = (\text{dom } I)^{-1} \]

\[
D := \{ \\
\quad m0[m]->S1[c] : 0 \leq c < m; \quad m0[m]->S2[c] : 0 \leq c < m; \\
\quad m1[k]->S3[i] : 1 \leq i \leq k; \quad m1[k]->S4[i] : 1 \leq i \leq k; \\
\quad m2[n]->S5[]; \quad m2[n]->S6[j] : 1 \leq j \leq n \}; \\
\text{DM} := (\text{domain_map } D)^{-1};
\]
Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
⇒ compute for each method

- \(ret_m \): size of memory returned by \(m \)
- \(cap_m \): size of memory “captured” (not returned) by \(m \)
- \(\text{memRq}_m \): total memory requirements of \(m \)

\[
\text{memRq}_m = \text{cap}_m + \max_{p \text{ called by } m} \text{memRq}_p
\]

\[
\text{memRq}_m = \text{cap}_m + \sum_{p \text{ called by } m} \text{ret}_p
\]
Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
⇒ compute for each method

\[\text{ret}_m \quad \text{size of memory returned by } m \]
\[\text{cap}_m \quad \text{size of memory “captured” (not returned) by } m \]
\[\text{memRq}_m \quad \text{total memory requirements of } m \]

\[\text{ret}_m + \text{cap}_m = \sum_{\text{p called by } m} \text{ret}_p \]

\[\text{memRq}_m = \text{cap}_m + \max_{\text{p called by } m} \text{memRq}_p \]

```java
B[] m2(int n) {
    B[] arrB = new B[n];
    for (j=1; j<=n; j++)
        B b = new B();
    return arrB;
}
```
Dynamic Memory Requirement Estimation [CFGV2006]

How much (scoped) memory is needed?
⇒ compute for each method

- \(\text{ret}_m \) size of memory returned by \(m \)
- \(\text{cap}_m \) size of memory “captured” (not returned) by \(m \)
- \(\text{memRq}_m \) total memory requirements of \(m \)

\[
\text{ret}_m + \text{cap}_m = \sum_{p \text{ called by } m} \text{ret}_p
\]
\[
\text{memRq}_m = \text{cap}_m + \max_{p \text{ called by } m} \text{memRq}_p
\]

B[] m2(int n) {
 B[] arrB = new B[n];
 for (j=1; j<=n; j++)
 B b = new B();
 return arrB;
}

ret_m2 := DM .
 { [m2[n] -> S5[]] -> n : n >= 0 };
cap_m2 := DM .
 { [m2[n] -> S6[j]] -> 1 };
req_m2 := cap_m2 +
 { m2[n] -> max(0) };
void m1(int k) {
 for (i = 1; i <= k; i++) {
 A a = new A(); /* S3 */
 B[] dummyArr = m2(i); /* S4 */
 }
}

cap_{m1}(k) = \sum_{1 \leq i \leq k} (1 + \text{ret}_{m2}(i))

ret_{m2} is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1
Dynamic Memory Requirement Estimation [CFGV2006]

```c
void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A();  /* S3 */
        B[] dummyArr = m2(i);  /* S4 */
    }
}
```

\[
\text{cap}_{m1}(k) = \sum_{1 \leq i \leq k} (1 + \text{ret}_{m2}(i))
\]

ret_m2 is a function of the arguments of m2
We want to use it as a function of the arguments and local variables of m1
⇒ define parameter binding

\[
\text{CB}_{m1} := \{ [m1[k] \rightarrow S4[i]] \rightarrow m2[i] \};
\]

\[
\text{cap}_{m1} := \text{DM} . (\{ [m1[k]\rightarrow S3[i]] \rightarrow 1 \} + (\text{CB}_{m1} \cdot \text{ret}_m2));
\]
Dynamic Memory Requirement Estimation [CFGV2006]

```c
void m1(int k) {
    for (i = 1; i <= k; i++) {
        A a = new A();  /* S3 */
        B[] dummyArr = m2(i);  /* S4 */
    }
}
```

\[
\text{memRq}_m = \text{cap}_m + \max_{p \text{ called by } m} \text{memRq}_p
\]

\[
\text{CB}_m1 := \{ [m1[k] -> S4[i]] -> m2[i] \};
\text{ret}_m1 := \{ m1[k] -> 0 \};
\text{cap}_m1 := \text{DM} \cdot (\{ [m1[k]->S3[i]] -> 1 \} + (\text{CB}_m1 \cdot \text{ret}_m2));
\text{req}_m1 := \text{cap}_m1 + (\text{DM} \cdot \text{CB}_m1 \cdot \text{req}_m2);
```
Dynamic Memory Requirement Estimation [CFGV2006]

```c
void m0(int m) {
 for (c = 0; c < m; c++) {
 m1(c); /* S1 */
 B[] m2Arr = m2(2 * m - c); /* S2 */
 }
}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];
 [m0[m] -> S2[c]] -> m2[2 * m - c] };
ret_m0 := { m0[m] -> 0 };
cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2);
req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 . req_m2));
```
void m0(int m) {
    for (c = 0; c < m; c++) {
        m1(c); /* S1 */
        B[] m2Arr = m2(2 * m - c); /* S2 */
    }
}

CB_m0 := { [m0[m] -> S1[c]] -> m1[c];
            [m0[m] -> S2[c]] -> m2[2 * m - c] }
ret_m0 := { m0[m] -> 0 }

cap_m0 := DM . CB_m0 . (ret_m1 + ret_m2)
req_m0 := cap_m0 + (DM . CB_m0 . (req_m1 + req_m2))

combine reductions
Reuse Distance Computation

Given an access to a cache line $\ell$, how many distinct cache lines have been accessed since the previous access to $\ell$?

⇒ Is the cache line still in the cache?
Reuse Distance Computation

Given an access to a cache line $\ell$, how many distinct cache lines have been accessed since the previous access to $\ell$?

$\Rightarrow$ Is the cache line still in the cache?

```c
for (i = 0; i <= 7; ++i) {
 A[i]; // reference a
 A[7-i]; // reference b
 if (i <= 3)
 A[2*i]; // reference c
}
```

Assume $A[i]$ in cache line $[i/3]$
## Reuse Distance Computation

Given an access to a cache line $\ell$, how many distinct cache lines have been accessed since the previous access to $\ell$?

⇒ Is the cache line still in the cache?

```c
for (i = 0; i <= 7; ++i) {
 A[i]; // reference a
 A[7-i]; // reference b
 if (i <= 3)
 A[2*i]; // reference c
}
```

Assume $A[i]$ in cache line $\lfloor i/3 \rfloor$

<table>
<thead>
<tr>
<th>$i$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>$r@i$</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>$[(r@i)/3]$</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>distance</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
for (i = 0; i <= 7; ++i) {
    A[i];       // reference a
    A[7-i];    // reference b
    if (i <= 3)
        A[2*i];  // reference c
}

Assume A[i] in cache line [i/3]
Reuse Distance Computation

```c
for (i = 0; i <= 7; ++i) {
 A[i]; // reference a
 A[7-i]; // reference b
 if (i <= 3)
 A[2*i]; // reference c
}
```

Assume $A[i]$ in cache line $\lfloor i/3 \rfloor$.

$$D := \{ a[i] : 0 \leq i \leq 7; \ b[i] : 0 \leq i \leq 7; \ c[i] : 0 \leq i \leq 3 \};$$

$$C := \{ A[i] \rightarrow L[j] : j = \text{floor}(i/3) \};$$

$$A := (\{ a[i] \rightarrow A[i]; \ b[i] \rightarrow A[7-i]; \ c[i] \rightarrow A[2i] \} \cdot C) \cdot D;$$

$$S := \{ a[i] \rightarrow [i,0]; \ b[i] \rightarrow [i,1]; \ c[i] \rightarrow [i,2] \} \cdot D;$$
Reuse Distance Computation

```c
for (i = 0; i <= 7; ++i) {
 A[i]; //reference a
 A[7-i]; //reference b
 if (i <= 3)
 A[2*i]; //reference c
}

Assume A[i] in cache line ⌊i/3⌋

S := { a[i] -> [i,0]; b[i] -> [i,1]; c[i] -> [i,2] } * D;
TIME := ran S; LT := TIME << TIME; LE := TIME <<= TIME;
T := ((Sˆ-1) . A . (Aˆ-1) . S) * LT;
M := lexmin T;
NEXT := S . M . (Sˆ-1); # map to next access to same cache line
AFTER_PREV := (NEXTˆ-1) . (S . LE . (Sˆ-1));
BEFORE := S . (LEˆ-1) . (Sˆ-1);
card ((AFTER_PREV * BEFORE) . A);
```